Elemental composition and oxidation of chamber organic aerosol
نویسندگان
چکیده
Recently, graphical representations of aerosol mass spectrometer (AMS) spectra and elemental composition have been developed to explain the oxidative and aging processes of secondary organic aerosol (SOA). It has been shown previously that oxygenated organic aerosol (OOA) components from ambient and laboratory data fall within a triangular region in the f44 vs. f43 space, where f44 and f43 are the ratios of the organic signal at m/z 44 and 43 to the total organic signal in AMS spectra, respectively; we refer to this graphical representation as the “triangle plot.” Alternatively, the Van Krevelen diagram has been used to describe the evolution of functional groups in SOA. In this study we investigate the variability of SOA formed in chamber experiments from twelve different precursors in both “triangle plot” and Van Krevelen domains. Spectral and elemental data from the high-resolution Aerodyne aerosol mass spectrometer are compared to offline species identification analysis and FTIR filter analysis to better understand the changes in functional and elemental composition inherent in SOA formation and aging. We find that SOA formed under highand low-NOx conditions occupy similar areas in the “triangle plot” and Van Krevelen diagram and that SOA generated from already oxidized precursors allows for the exploration of areas higher on the “triangle plot” not easily accessible with non-oxidized precursors. As SOA ages, it migrates toward the top of the triangle along a path largely dependent on the precursor identity, which suggests increasing organic acid content and decreasing mass spectral variability. The most oxidized SOA come from the photooxidation of methoxyphenol precursors which yielded SOA O/C ratios near unity. α-pinene ozonolysis and naphthalene photooxidation SOA systems have had the highest degree of mass closure in previous chemical charCorrespondence to: J. H. Seinfeld ([email protected]) acterization studies and also show the best agreement between AMS elemental composition measurements and elemental composition of identified species within the uncertainty of the AMS elemental analysis. In general, compared to their respective unsaturated SOA precursors, the elemental composition of chamber SOA follows a slope shallower than −1 on the Van Krevelen diagram, which is indicative of oxidation of the precursor without substantial losss of hydrogen, likely due to the unsaturated nature of the precursors. From the spectra of SOA studied here, we are able to reproduce the triangular region originally constructed with ambient OOA compents with chamber aerosol showing that SOA becomes more chemically similar as it ages. Ambient data in the middle of the triangle represent the ensemble average of many different SOA precursors, ages, and oxidative processes.
منابع مشابه
Supplemental Material for Elemental Composition and Oxidation of Chamber Organic Aerosol
P. S. Chhabra1, N. L. Ng2, M. R. Canagaratna2, A. L. Corrigan3, L. M. Russell3, D. R. Worsnop2, R. C. Flagan1,4, and J. H. Seinfeld1,4 1Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 2Aerodyne Research, Inc. Billerica, MA 3Scripps Institution of Oceanography, University of California, San Diego, CA 4Division of Engineering and Applied Science, C...
متن کاملCharacterisation of lightly oxidised organic aerosol formed from the photochemical aging of diesel exhaust particles
The oxidative aging of the semivolatile fraction of diesel exhaust aerosol is studied in order to better understand the influence of oxidation reactions on particle chemical composition. Exhaust is sampled from an idling diesel truck, sent through a denuder to remove gas-phase species and oxidised by hydroxyl (OH ) radicals in a flow reactor. OH concentrations are chosen to approximately match ...
متن کاملElemental analysis of chamber organic aerosol using an aerodyne high-resolution aerosol mass spectrometer
The elemental composition of laboratory chamber secondary organic aerosol (SOA) from glyoxal uptake, α-pinene ozonolysis, isoprene photooxidation, single-ring aromatic photooxidation, and naphthalene photooxidation is evaluated using Aerodyne high-resolution time-of-flight mass spectrometer data. SOA O/C ratios range from 1.13 for glyoxal uptake experiments to 0.30–0.43 for α-pinene ozonolysis....
متن کاملFormation and aging of secondary organic aerosol from toluene: changes in chemical composition, volatility, and hygroscopicity
Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NOx under different oxidizing conditions. ...
متن کاملFormation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation.
Gas-phase low volatility organic compounds (LVOC), produced from oxidation of isoprene 4-hydroxy-3-hydroperoxide (4,3-ISOPOOH) under low-NO conditions, were observed during the FIXCIT chamber study. Decreases in LVOC directly correspond to appearance and growth in secondary organic aerosol (SOA) of consistent elemental composition, indicating that LVOC condense (at OA below 1 μg m(-3)). This re...
متن کامل